A Flow orchestrates Executors into a processing pipeline to build a multi-modal/cross-modal application. Documents “flow” through the created pipeline and are processed by Executors.

You can think of Flow as an interface to configure and launch your microservice architecture, while the heavy lifting is done by the services themselves. In particular, each Flow also launches a Gateway service, which can expose all other services through an API that you define.

The most important methods of the Flow object are the following:




Add an Executor to the Flow


Starts the Flow. This will start all its Executors and check if they are ready to be used.


Stops and closes the Flow. This will stop and shutdown all its Executors.

with context manager

Use the Flow as a context manager. It will automatically start and stop your Flow.


Visualizes the Flow. Helpful for building complex pipelines.


Sends requests to the Flow API.


Blocks execution until the program is terminated. This is useful to keep the Flow alive so it can be used from other places (clients, etc).


Generates a Docker-Compose file listing all its Executors as Services.


Generates the Kubernetes configuration files in <output_directory>. Based on your local Jina version, Jina Hub may rebuild the Docker image during the YAML generation process. If you do not wish to rebuild the image, set the environment variable JINA_HUB_NO_IMAGE_REBUILD.


Calls the dry run endpoint of the Flow to check if the Flow is ready to process requests. Returns a boolean indicating the readiness

Why should you use a Flow?#

Once you have learned DocumentArray and Executor, you are able to split your multi-modal/cross-modal application into different independent modules and services. But you need to chain them together in order to bring real value and to build and serve an application. That’s exactly what Flows enable you to do.

  • Flows connect microservices (Executors) to build a service with proper client/server style interface over HTTP, gRPC, or Websocket

  • Flows let you scale these Executors independently to adjust to your requirements

  • Flows allow you to easily use other cloud-native orchestrators, such as Kubernetes, to manage your service

Minimum working example#

from docarray import Document
from jina import Flow, Executor, requests

class MyExecutor(Executor):
    def foo(self, docs, **kwargs):

f = Flow().add(name='myexec1', uses=MyExecutor)

with f:
    f.post(on='/bar', inputs=Document(), on_done=print)


from jina import Flow, Executor, requests

class MyExecutor(Executor):
    def foo(self, docs, **kwargs):

f = Flow(port=12345).add(name='myexec1', uses=MyExecutor)

with f:


from docarray import Document
from jina import Client

c = Client(port=12345)
c.post(on='/bar', inputs=Document(), on_done=print)


jtype: Flow
  - name: myexec1
    uses: FooExecutor
    py_modules: exec.py


from docarray import Document, DocumentArray

from jina import Executor, requests

class FooExecutor(Executor):
    def foo(self, docs: DocumentArray, **kwargs):
        docs.append(Document(text='foo was here'))
from docarray import Document
from jina import Flow

f = Flow.load_config('my.yml')

with f:
    f.post(on='/bar', inputs=Document(), on_done=print)

See Also

Executor and Flow are the two fundamental concepts in Jina.

  • Document is the basic data type in Jina

  • Executor is how Jina processes Documents

  • Flow is how Jina streamlines and scales Executors