Document

Document is the basic data type in Jina. Whether you’re working with text, image, video, audio, or 3D meshes, they are all Documents in Jina.

Construct

from jina import Document

d = Document()
from jina import Document
import numpy

d1 = Document(text='hello')
d2 = Document(buffer=b'\f1')
d3 = Document(blob=numpy.array([1, 2, 3]))
d4 = Document(uri='https://jina.ai',
             mime_type='text/plain',
             granularity=1,
             adjacency=3,
             tags={'foo': 'bar'})
<jina.types.document.Document ('id', 'mime_type', 'text') at 4483297360>
<jina.types.document.Document ('id', 'buffer') at 5710817424>
<jina.types.document.Document ('id', 'blob') at 4483299536>
<jina.types.document.Document id=e01a53bc-aedb-11eb-88e6-1e008a366d48 uri=https://jina.ai mimeType=text/plain tags={'foo': 'bar'} granularity=1 adjacency=3 at 6317309200>
from jina import Document

d = Document(content='hello, world!')
d1 = d

assert id(d) == id(d1)  # True

To make a deep copy, use copy=True:

d1 = Document(d, copy=True)

assert id(d) == id(d1)  # False
from jina import Document
import json

d = {'id': 'hello123', 'content': 'world'}
d1 = Document(d)

d = json.dumps({'id': 'hello123', 'content': 'world'})
d2 = Document(d)

Parsing unrecognized fields

Unrecognized fields in a dict/JSON string are automatically put into the Document’s .tags field:

from jina import Document

d1 = Document({'id': 'hello123', 'foo': 'bar'})
<jina.types.document.Document id=hello123 tags={'foo': 'bar'} at 6320791056>

You can use field_resolver to map external field names to Document attributes:

from jina import Document

d1 = Document({'id': 'hello123', 'foo': 'bar'}, field_resolver={'foo': 'content'})
<jina.types.document.Document id=hello123 mimeType=text/plain text=bar at 6246985488>

Set/unset attributes

Set an attribute as you would with any Python object:

from jina import Document

d = Document()
d.text = 'hello world'
<jina.types.document.Document id=9badabb6-b9e9-11eb-993c-1e008a366d49 mime_type=text/plain text=hello world at 4444621648>
d.text = None

or

d.pop('text')
<jina.types.document.Document id=cdf1dea8-b9e9-11eb-8fd8-1e008a366d49 mime_type=text/plain at 4490447504>
d.pop('text', 'id', 'mime_type')
<jina.types.document.Document at 5668344144>

Content

text, blob, and buffer are the three content attributes of a Document. They correspond to string-like data (e.g. for natural language), ndarray-like data (e.g. for image/audio/video data), and binary data for general purpose, respectively. Each Document can contain only one type of content.

Attribute Accept type Use case
doc.text Python string Contain text
doc.blob A Python (nested) list/tuple of numbers, Numpy ndarray, SciPy sparse matrix (spmatrix), TensorFlow dense & sparse tensor, PyTorch dense & sparse tensor, PaddlePaddle dense tensor Contain image/video/audio
doc.buffer Binary string Contain intermediate IO buffer

Exclusivity of the content

Note that one Document can only contain one type of content: either text, buffer, or blob. If you set one, the others will be cleared.

import numpy as np

d = Document(text='hello')
d.blob = np.array([1])

d.text  # <- now it's empty

Why a Document contains only data type

What if you want to represent more than one kind of information? Say, to fully represent a PDF page you need to store both image and text. In this case, you can use nested Documents by putting image into one sub-Document, and text into another.

d = Document(chunks=[Document(blob=...), Document(text=...)])

The principle is each Document contains only one modality. This makes the whole logic clearer.

Tip

There is also a doc.content sugar getter/setter of the above non-empty field. The content will be automatically grabbed or assigned to either text, buffer, or blob field based on the given type.

Load content from URI

Often, you need to load data from a URI instead of assigning them directly in your code, uri is the attribute you must learn.

After setting .uri, you can load data into .text/.buffer/.blob as follows.

The value of .uri can point to either local URI, remote URI or data URI.

from jina import Document

d1 = Document(uri='apple.png').load_uri_to_image_blob()
print(d1.content_type, d1.content)
blob [[[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
from jina import Document

d1 = Document(uri='https://www.gutenberg.org/files/1342/1342-0.txt').load_uri_to_text()

print(d1.content_type, d1.content)
text The Project Gutenberg eBook of Pride and Prejudice, by Jane Austen

This eBook is for the use of anyone anywhere in the United States and
most other parts of the wor
from jina import Document

d1 = Document(uri='''
AAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/w38GIAXDIBKE0DHxgljNBAAO
9TXL0Y4OHwAAAABJRU5ErkJggg==
''').load_uri_to_image_blob()

print(d1.content_type, d1.content)
blob [[[255 255 255]
  [255   0   0]
  [255   0   0]
  [255   0   0]
  [255 255 255]]
  ...

There are more .load_uri_to_* functions that allow you to read text, image, video, 3D mesh, audio and tabular data into Jina.

Write to data URI

Inline data URI is helpful when you need a quick visualization in HTML, as it embeds all resources directly into that HTML.

You can convert a URI to a data URI using doc.load_uri_to_datauri(). This will fetch the resource and make it inline.

Embedding

Embedding is a multi-dimensional representation of a Document (often a [1, D] vector). It serves as a very important piece in the neural search.

Document has an attribute embedding to contain the embedding information.

Like .blob, you can assign it with a Python (nested) List/Tuple, Numpy ndarray, SciPy sparse matrix (spmatrix), TensorFlow dense and sparse tensor, PyTorch dense and sparse tensor, or PaddlePaddle dense tensor.

import numpy as np
import scipy.sparse as sp
import torch
import tensorflow as tf
from jina import Document

d0 = Document(embedding=[1, 2, 3])
d1 = Document(embedding=np.array([1, 2, 3]))
d2 = Document(embedding=np.array([[1, 2, 3], [4, 5, 6]]))
d3 = Document(embedding=sp.coo_matrix([0, 0, 0, 1, 0]))
d4 = Document(embedding=torch.tensor([1, 2, 3]))
d5 = Document(embedding=tf.sparse.from_dense(np.array([[1, 2, 3], [4, 5, 6]])))

Fill embedding from DNN model

On multiple Documents

This is a syntax sugar on single Document, which leverages embed() underneath. To embed multiple Documents, do not use this feature in a for-loop. Instead, read more details in Embed via model.

Once a Document has .blob set, you can use a deep neural network to embed() it, which means filling Document.embedding. For example, our Document looks like the following:

q = (Document(uri='/Users/hanxiao/Downloads/left/00003.jpg')
     .load_uri_to_image_blob()
     .set_image_blob_normalization()
     .set_image_blob_channel_axis(-1, 0))

Let’s embed it into vector via ResNet:

import torchvision
model = torchvision.models.resnet50(pretrained=True)
q.embed(model)

Find nearest-neighbours

On multiple Documents

This is a syntax sugar on single Document, which leverages match() underneath. To match multiple Documents, do not use this feature in a for-loop. Instead, find out more in Find nearest neighbours.

Once a Document has .embedding filled, it can be “matched”. In this example, we build ten Documents and put them into a DocumentArray, and then use another Document to search against them.

from jina import DocumentArray, Document
import numpy as np

da = DocumentArray.empty(10)
da.embeddings = np.random.random([10, 256])

q = Document(embedding=np.random.random([256]))
q.match(da)

print(q.matches[0])
<jina.types.document.Document ('id', 'embedding', 'adjacency', 'scores') at 8256118608>

Nested Documents

Document can be nested both horizontally and vertically. The following graphic illustrates the recursive Document structure. Each Document can have multiple “chunks” and “matches”, which are Document as well.

Attribute Description
doc.chunks The list of sub-Documents of this Document. They have granularity + 1 but same adjacency
doc.matches The list of matched Documents of this Document. They have adjacency + 1 but same granularity
doc.granularity The recursion "depth" of the recursive chunks structure
doc.adjacency The recursion "width" of the recursive match structure

You can add chunks (sub-Document) and matches (neighbour-Document) to a Document:

  • Add in constructor:

    d = Document(chunks=[Document(), Document()], matches=[Document(), Document()])
    
  • Add to existing Document:

    d = Document()
    d.chunks = [Document(), Document()]
    d.matches = [Document(), Document()]
    
  • Add to existing doc.chunks or doc.matches:

    d = Document()
    d.chunks.append(Document())
    d.matches.append(Document())
    

Note

Both doc.chunks and doc.matches return ChunkArray and MatchArray, which are sub-classes of DocumentArray. We will introduce DocumentArray later.

Caveat: order matters

When adding sub-Documents to Document.chunks, avoid creating them in one line, otherwise the recursive Document structure will not be correct. This is because chunks use ref_doc to control their granularity. At chunk creation time the chunk doesn’t know anything about its parent, and will get a wrong granularity value.

from jina import Document

root_document = Document(text='i am root')
# add one chunk to root
root_document.chunks.append(Document(text='i am chunk 1'))
root_document.chunks.extend([
   Document(text='i am chunk 2'),
   Document(text='i am chunk 3'),
])  # add multiple chunks to root
from jina import Document

root_document = Document(
   text='i am root',
   chunks=[
      Document(text='i am chunk 2'),
      Document(text='i am chunk 3'),
   ]
)

Tags

Document contains the tags attribute that can hold a map-like structure that can map arbitrary values. In practice, you can store meta information in tags.

from jina import Document

doc = Document(tags={'dimensions': {'height': 5.0, 'weight': 10.0, 'last_modified': 'Monday'}})

doc.tags['dimensions']
{'weight': 10.0, 'height': 5.0, 'last_modified': 'Monday'}

To provide easy access to nested fields, the Document allows you to access attributes by composing the attribute qualified name with interlaced __ symbols:

from jina import Document

doc = Document(tags={'dimensions': {'height': 5.0, 'weight': 10.0}})

doc.tags__dimensions__weight
10.0

This also allows the access of nested metadata attributes in bulk from a DocumentArray.

from jina import Document, DocumentArray

da = DocumentArray([Document(tags={'dimensions': {'height': 5.0, 'weight': 10.0}}) for _ in range(10)])

da.get_attributes('tags__dimensions__height', 'tags__dimensions__weight')
[[5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]]

Note

As tags does not have a fixed schema, it is declared with type google.protobuf.Struct in the DocumentProto protobuf declaration. However, google.protobuf.Struct follows the JSON specification and does not differentiate int from float. So, data of type int in tags will be always casted to float when a request is sent to an Executor.

As a result, users need be explicit and cast the data to the expected type as follows:

class MyIndexer(Executor):
    animals = ['cat', 'dog', 'turtle']
    @request
    def foo(self, docs, parameters: dict, **kwargs):
        for doc in docs:
            # need to cast to int since list indices must be integers not float
            index = int(doc.tags['index'])
            assert self.animals[index] == 'dog'

with Flow().add(uses=MyExecutor) as f:
    f.post(on='/endpoint',
    inputs=DocumentArray([]), parameters={'index': 1})
class MyIndexer(Executor):
    animals = ['cat', 'dog', 'turtle']
    @request
    def foo(self, docs, parameters: dict, **kwargs):
        for doc in docs:
            # ERROR: list indices must be integer not float
            index = doc.tags['index']
            assert self.animals[index] == 'dog'

with Flow().add(uses=MyExecutor) as f:
    f.post(on='/endpoint',
    inputs=DocumentArray([]), parameters={'index': 1})

Serialization

You can serialize a Document into JSON string via to_json() or Python dict via to_dict() or binary string via bytes():

from jina import Document

Document(content='hello, world', embedding=[1, 2, 3]).to_json()
{
  "embedding": [
    1,
    2,
    3
  ],
  "id": "9e36927e576b11ec81971e008a366d48",
  "mime_type": "text/plain",
  "text": "hello, world"
}
from jina import Document

bytes(Document(content='hello, world', embedding=[1, 2, 3]))
b'\n aad94436576b11ec81551e008a366d48R\ntext/plainj\x0chello, world\x9a\x01+\n"\n\x18\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x12\x01\x03\x1a\x03<i8\x1a\x05numpy'
from jina import Document

Document(content='hello, world', embedding=[1, 2, 3]).to_dict()
{'id': 'c742f7f2576b11ec89aa1e008a366d48', 'mime_type': 'text/plain', 'text': 'hello, world', 'embedding': [1, 2, 3]}

Visualization

To better see the Document’s recursive structure, you can use plot() function. If you are using JupyterLab/Notebook, all Document objects will be auto-rendered:

import numpy as np
from jina import Document

d0 = Document(id='🐲', embedding=np.array([0, 0]))
d1 = Document(id='🐦', embedding=np.array([1, 0]))
d2 = Document(id='🐢', embedding=np.array([0, 1]))
d3 = Document(id='🐯', embedding=np.array([1, 1]))

d0.chunks.append(d1)
d0.chunks[0].chunks.append(d2)
d0.matches.append(d3)

d0.plot()  # simply `d0` on JupyterLab
../../../_images/four-symbol-docs.svg