Add Executors#

Define Executor with uses#

An Executor’s type is defined by the uses keyword:

from jina import Deployment

dep = Deployment(uses=MyExec)
from jina import Flow

f = Flow().add(uses=MyExec)

Note that some usages are not supported on JCloud due to security reasons and the nature of facilitating local debugging.

Local Dev

JCloud

uses=...

Description

ExecutorClass

Use ExecutorClass from the inline context.

'my.py_modules.ExecutorClass'

Use ExecutorClass from my.py_modules.

'executor-config.yml'

Use an Executor from a YAML file defined by Executor YAML interface.

'jinaai://jina-ai/TransformerTorchEncoder/'

Use an Executor as Python source from Executor Hub.

'jinaai+docker://jina-ai/TransformerTorchEncoder'

Use an Executor as a Docker container from Executor Hub.

'jinaai+sandbox://jina-ai/TransformerTorchEncoder'

Use a Sandbox Executor hosted on Executor Hub. The Executor runs remotely on Executor Hub.

'docker://sentence-encoder'

Use a pre-built Executor as a Docker container.

Hint: Load multiple Executors from the same directory

You don’t need to specify the parent directory for each Executor. Instead, you can configure a common search path for all Executors:

.
├── app
│   └── ▶ main.py
└── executor
    ├── config1.yml
    ├── config2.yml
    └── my_executor.py
dep = Deployment(extra_search_paths=['../executor']).add(uses='config1.yml')) # Deployment
f = Flow(extra_search_paths=['../executor']).add(uses='config1.yml').add(uses='config2.yml') # Flow

Configure Executors#

You can set and override Executor configuration when adding them to an Orchestration.

This example shows how to start a Flow with an Executor using the Python API:

from jina import Deployment

dep = Deployment(
    uses='MyExecutor',
    uses_with={"parameter_1": "foo", "parameter_2": "bar"},
    py_modules=["executor.py"],
    uses_metas={
        "name": "MyExecutor",
        "description": "MyExecutor does a thing to the stuff in your Documents",
    },
    uses_requests={"/index": "my_index", "/search": "my_search", "/random": "foo"},
    workspace="some_custom_path",
)

with dep:
    ...
from jina import Flow

f = Flow().add(
    uses='MyExecutor',
    uses_with={"parameter_1": "foo", "parameter_2": "bar"},
    py_modules=["executor.py"],
    uses_metas={
        "name": "MyExecutor",
        "description": "MyExecutor does a thing to the stuff in your Documents",
    },
    uses_requests={"/index": "my_index", "/search": "my_search", "/random": "foo"},
    workspace="some_custom_path",
) 

with f:
    ...
  • uses_with is a key-value map that defines the arguments of the Executor’ __init__ method.

  • uses_requests is a key-value map that defines the mapping from endpoint to class method. This is useful to overwrite the default endpoint-to-method mapping defined in the Executor python implementation.

  • workspace is a string that defines the workspace.

  • py_modules is a list of strings that defines the Executor’s Python dependencies;

  • uses_metas is a key-value map that defines some of the Executor’s internal attributes. It contains the following fields:

    • name is a string that defines the name of the Executor;

    • description is a string that defines the description of this Executor. It is used in the automatic docs UI;

Set with via uses_with#

To set/override an Executor’s with configuration, use uses_with. The with configuration refers to user-defined constructor kwargs.

from jina import Executor, requests, Deployment


class MyExecutor(Executor):
    def __init__(self, param1=1, param2=2, param3=3, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.param1 = param1
        self.param2 = param2
        self.param3 = param3

    @requests
    def foo(self, docs, **kwargs):
        print('param1:', self.param1)
        print('param2:', self.param2)
        print('param3:', self.param3)


dep = Deployment(uses=MyExecutor, uses_with={'param1': 10, 'param3': 30})

with dep:
    dep.post('/')
      [email protected][L]:ready and listening
        [email protected][L]:ready and listening
           [email protected][I]:🎉 Deployment is ready to use!
	🔗 Protocol: 		GRPC
	🏠 Local access:	0.0.0.0:32825
	🔒 Private network:	192.168.1.101:32825
	🌐 Public address:	197.28.82.165:32825
param1: 10
param2: 2
param3: 30
from jina import Executor, requests, Flow


class MyExecutor(Executor):
    def __init__(self, param1=1, param2=2, param3=3, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.param1 = param1
        self.param2 = param2
        self.param3 = param3

    @requests
    def foo(self, docs, **kwargs):
        print('param1:', self.param1)
        print('param2:', self.param2)
        print('param3:', self.param3)


f = Flow().add(uses=MyExecutor, uses_with={'param1': 10, 'param3': 30})

with f:
    f.post('/')
      [email protected][L]:ready and listening
        [email protected][L]:ready and listening
           [email protected][I]:🎉 Flow is ready to use!
	🔗 Protocol: 		GRPC
	🏠 Local access:	0.0.0.0:32825
	🔒 Private network:	192.168.1.101:32825
	🌐 Public address:	197.28.82.165:32825
param1: 10
param2: 2
param3: 30

Set requests via uses_requests#

You can set/override an Executor’s requests configuration and bind methods to custom endpoints. In the following code:

  • We replace the endpoint /foo bound to the foo() function with both /non_foo and /alias_foo.

  • We add a new endpoint /bar for binding bar().

Note the all_req() function is bound to all endpoints except those explicitly bound to other functions, i.e. /non_foo, /alias_foo and /bar.

from jina import Executor, requests, Deployment


class MyExecutor(Executor):
    @requests
    def all_req(self, parameters, **kwargs):
        print(f'all req {parameters.get("recipient")}')

    @requests(on='/foo')
    def foo(self, parameters, **kwargs):
        print(f'foo {parameters.get("recipient")}')

    def bar(self, parameters, **kwargs):
        print(f'bar {parameters.get("recipient")}')


dep = Deployment(
    uses=MyExecutor,
    uses_requests={
        '/bar': 'bar',
        '/non_foo': 'foo',
        '/alias_foo': 'foo',
    },
)

with dep
    dep.post('/bar', parameters={'recipient': 'bar()'})
    dep.post('/non_foo', parameters={'recipient': 'foo()'})
    dep.post('/foo', parameters={'recipient': 'all_req()'})
    dep.post('/alias_foo', parameters={'recipient': 'foo()'})
      [email protected][L]:ready and listening
        [email protected][L]:ready and listening
           [email protected][I]:🎉 Deployment is ready to use!
	🔗 Protocol: 		GRPC
	🏠 Local access:	0.0.0.0:36507
	🔒 Private network:	192.168.1.101:36507
	🌐 Public address:	197.28.82.165:36507
bar bar()
foo foo()
all req all_req()
foo foo()
from jina import Executor, requests, Flow


class MyExecutor(Executor):
    @requests
    def all_req(self, parameters, **kwargs):
        print(f'all req {parameters.get("recipient")}')

    @requests(on='/foo')
    def foo(self, parameters, **kwargs):
        print(f'foo {parameters.get("recipient")}')

    def bar(self, parameters, **kwargs):
        print(f'bar {parameters.get("recipient")}')


f = Flow().add(
    uses=MyExecutor,
    uses_requests={
        '/bar': 'bar',
        '/non_foo': 'foo',
        '/alias_foo': 'foo',
    },
)
with f:
    f.post('/bar', parameters={'recipient': 'bar()'})
    f.post('/non_foo', parameters={'recipient': 'foo()'})
    f.post('/foo', parameters={'recipient': 'all_req()'})
    f.post('/alias_foo', parameters={'recipient': 'foo()'})
      [email protected][L]:ready and listening
        [email protected][L]:ready and listening
           [email protected][I]:🎉 Flow is ready to use!
	🔗 Protocol: 		GRPC
	🏠 Local access:	0.0.0.0:36507
	🔒 Private network:	192.168.1.101:36507
	🌐 Public address:	197.28.82.165:36507
bar bar()
foo foo()
all req all_req()
foo foo()

Set metas via uses_metas#

To set/override an Executor’s metas configuration, use uses_metas:

from jina import Executor, requests, Deployment


class MyExecutor(Executor):
    @requests
    def foo(self, docs, **kwargs):
        print(self.metas.name)


dep = Deployment(
    uses=MyExecutor,
    uses_metas={'name': 'different_name'},
)

with dep:
    dep.post('/')
      [email protected][L]:ready and listening
        [email protected][L]:ready and listening
           [email protected][I]:🎉 Deployment is ready to use!
	🔗 Protocol: 		GRPC
	🏠 Local access:	0.0.0.0:58827
	🔒 Private network:	192.168.1.101:58827
different_name
from jina import Executor, requests, Flow


class MyExecutor(Executor):
    @requests
    def foo(self, docs, **kwargs):
        print(self.metas.name)


flow = Flow().add(
    uses=MyExecutor,
    uses_metas={'name': 'different_name'},
)
with flow as f:
    f.post('/')
      [email protected][L]:ready and listening
        [email protected][L]:ready and listening
           [email protected][I]:🎉 Flow is ready to use!
	🔗 Protocol: 		GRPC
	🏠 Local access:	0.0.0.0:58827
	🔒 Private network:	192.168.1.101:58827
different_name

Unify output ndarray types#

Different Executors may depend on different types for array-like data such as doc.tensor and doc.embedding, often because they were written with different machine learning frameworks. As the builder of an Orchestration you don’t always have control over this, for example when using Executors from Executor Hub.

To ease the integration of different Executors, an Orchestration allows you to convert tensor and embedding:

from jina import Deployment

dep = Deployment(uses=MyExecutor, output_array_type='numpy')
from jina import Flow

f = Flow().add(uses=MyExecutor, output_array_type='numpy').add(uses=NeedsNumpyExecutor)

This converts the .tensor and .embedding fields of all output Documents of MyExecutor to numpy.ndarray, making the data usable by NeedsNumpyExecutor. This works whether MyExecutor populates these fields with arrays/tensors from PyTorch, TensorFlow, or any other popular ML framework.

Output types

output_array_type= supports more types than 'numpy'. For the full specification and further details, check the protobuf serialization docs.

Use external Executors#

Usually an Orchestration starts and stops its own Executor(s). External Executors are owned by other Orchestrations, meaning they can reside on any machine and their lifetime are controlled by others.

Using external Executors is useful for sharing expensive Executors (like stateless, GPU-based encoders) between Orchestrations.

Both served and shared Executors can be used as external Executors.

When you add an external Executor, you have to provide a host and port, and enable the external flag:

from jina import Deployment

Deployment(host='123.45.67.89', port=12345, external=True)

# or

Deployment(host='123.45.67.89:12345', external=True)
from jina import Flow

Flow().add(host='123.45.67.89', port=12345, external=True)

# or

Flow().add(host='123.45.67.89:12345', external=True)

The Orchestration doesn’t start or stop this Executor and assumes that it is externally managed and available at 123.45.67.89:12345.

Despite the lifetime control, the external Executor behaves just like a regular one. You can even add the same Executor to multiple Orchestrations.

Enable TLS#

You can also use external Executors with tls:

from jina import Deployment

Deployment(host='123.45.67.89:443', external=True, tls=True)
from jina import Flow

Flow().add(host='123.45.67.89:443', external=True, tls=True)

After that, the external Executor behaves just like an internal one. You can even add the same Executor to multiple Orchestrations.

Hint

Using tls to connect to the External Executor is especially needed to use an external Executor deployed with JCloud. See the JCloud documentation for further details

Pass arguments#

External Executors may require extra configuration to run. Think about an Executor that requires authentication to run. You can pass the grpc_metadata parameter to the Executor. grpc_metadata is a dictionary of key-value pairs to be passed along with every gRPC request sent to that Executor.

from jina import Deployment

Deployment(
    host='123.45.67.89',
    port=443,
    external=True,
    grpc_metadata={'authorization': '<TOKEN>'},
)
from jina import Flow

Flow().add(
    host='123.45.67.89',
    port=443,
    external=True,
    grpc_metadata={'authorization': '<TOKEN>'},
)

Hint

The grpc_metadata parameter here follows the metadata concept in gRPC. See gRPC documentation for details.