jina.drivers.predict¶
-
class
jina.drivers.predict.
BasePredictDriver
(executor=None, method='predict', fields='embedding', *args, **kwargs)[source]¶ Bases:
jina.drivers.FlatRecursiveMixin
,jina.drivers.BaseExecutableDriver
Drivers inherited from
BasePredictDriver
will bindpredict()
by default- Parameters
fields (
Union
[Tuple
,str
]) – name of fields to be used to predict tags, default “embeddings”args – additional positional arguments which are just used for the parent initialization
kwargs – additional key value arguments which are just used for the parent initialization
-
runtime
: Optional[ZEDRuntime]¶
-
class
jina.drivers.predict.
BaseLabelPredictDriver
(output_tag='prediction', *args, **kwargs)[source]¶ Bases:
jina.drivers.predict.BasePredictDriver
Base class of a Driver for label prediction.
- Parameters
output_tag (
str
) – output label will be written todoc.tags
args – additional positional arguments which are just used for the parent initialization
kwargs – additional key value arguments which are just used for the parent initialization
-
prediction2label
(prediction)[source]¶ Converting ndarray prediction into list of readable labels
Note
len(output)
should be the same asprediction.shape[0]
- Parameters
prediction (
ndarray
) – the float/int numpy ndarray given byBaseClassifier
- Return type
List
[Any
]- Returns
the readable label to be stored.
-
runtime
: Optional[ZEDRuntime]¶
-
class
jina.drivers.predict.
BinaryPredictDriver
(one_label='yes', zero_label='no', *args, **kwargs)[source]¶ Bases:
jina.drivers.predict.BaseLabelPredictDriver
Converts binary prediction into string label. This is often used with binary classifier.
- Parameters
one_label (
str
) – label when prediction is onezero_label (
str
) – label when prediction is zeroargs – additional positional arguments which are just used for the parent initialization
kwargs – additional key value arguments which are just used for the parent initialization
-
prediction2label
(prediction)[source]¶ - Parameters
prediction (
ndarray
) – a (B,) or (B, 1) zero one array- Return type
List
[str
]- Returns
the labels as either
self.one_label
orself.zero_label
-
runtime
: Optional[ZEDRuntime]¶
-
class
jina.drivers.predict.
OneHotPredictDriver
(labels, *args, **kwargs)[source]¶ Bases:
jina.drivers.predict.BaseLabelPredictDriver
Mapping prediction to one of the given labels
Expect prediction to be 2dim array, zero-one valued. Each row corresponds to a sample, each column corresponds to a label. Each row can have only one 1.
This is often used with multi-class classifier.
-
validate_labels
(prediction)[source]¶ Validate the labels.
- Parameters
prediction (
ndarray
) – the predictions
-
prediction2label
(prediction)[source]¶ - Parameters
prediction (
ndarray
) – a (B, C) array where C is the number of classes, only one element can be one- Return type
List
[str
]- Returns
the list of labels
-
runtime
: Optional[ZEDRuntime]¶
-
-
class
jina.drivers.predict.
MultiLabelPredictDriver
(labels, *args, **kwargs)[source]¶ Bases:
jina.drivers.predict.OneHotPredictDriver
Mapping prediction to a list of labels
Expect prediction to be 2dim array, zero-one valued. Each row corresponds to a sample, each column corresponds to a label. Each row can have only multiple 1s.
This is often used with multi-label classifier, where each instance can have multiple labels
-
prediction2label
(prediction)[source]¶ Transform the prediction into labels.
- Parameters
prediction (
ndarray
) – the array of predictions- Return type
List
[List
[str
]]- Returns
nested list of labels
-
runtime
: Optional[ZEDRuntime]¶
-
-
class
jina.drivers.predict.
Prediction2DocBlobDriver
(executor=None, method='predict', fields='embedding', *args, **kwargs)[source]¶ Bases:
jina.drivers.predict.BasePredictDriver
Write the prediction result directly into
document.blob
.Warning
This will erase the content in
document.text
anddocument.buffer
.-
runtime
: Optional[ZEDRuntime]¶
-