Source code for jina.helloworld.fashion.helper

import gzip
import os
import random
import urllib.request
import webbrowser
from collections import defaultdict

import numpy as np

from jina import Document
from jina.helper import colored
from jina.logging.predefined import default_logger
from jina.logging.profile import ProgressBar

result_html = []
top_k = 0
num_docs_evaluated = 0
evaluation_value = defaultdict(float)


def _get_groundtruths(target, pseudo_match=True):
    # group doc_ids by their labels
    a = np.squeeze(target['index-labels']['data'])
    a = np.stack([a, np.arange(len(a))], axis=1)
    a = a[a[:, 0].argsort()]
    lbl_group = np.split(a[:, 1], np.unique(a[:, 0], return_index=True)[1][1:])

    # each label has one groundtruth, i.e. all docs that have the same label are considered as matches
    groundtruths = {lbl: Document() for lbl in range(10)}
    for lbl, doc_ids in enumerate(lbl_group):
        if not pseudo_match:
            # full-match, each doc has 6K matches
            for doc_id in doc_ids:
                match = Document()
                match.tags['id'] = int(doc_id)
                groundtruths[lbl].matches.append(match)
        else:
            # pseudo-match, each doc has only one match, but this match's id is a list of 6k elements
            match = Document()
            match.tags['id'] = doc_ids.tolist()
            groundtruths[lbl].matches.append(match)

    return groundtruths


[docs]def index_generator(num_docs: int, target: dict): """ Generate the index data. :param num_docs: Number of documents to be indexed. :param target: Dictionary which stores the data paths :yields: index data """ for internal_doc_id in range(num_docs): # x_blackwhite.shape is (28,28) x_blackwhite = 255 - target['index']['data'][internal_doc_id] # x_color.shape is (28,28,3) x_color = np.stack((x_blackwhite,) * 3, axis=-1) d = Document(content=x_color) d.tags['id'] = internal_doc_id yield d
[docs]def query_generator(num_docs: int, target: dict, with_groundtruth: bool = True): """ Generate the query data. :param num_docs: Number of documents to be queried :param target: Dictionary which stores the data paths :param with_groundtruth: True if want to include labels into query data :yields: query data """ gts = _get_groundtruths(target) for _ in range(num_docs): num_data = len(target['query-labels']['data']) idx = random.randint(0, num_data - 1) # x_blackwhite.shape is (28,28) x_blackwhite = 255 - target['query']['data'][idx] # x_color.shape is (28,28,3) x_color = np.stack((x_blackwhite,) * 3, axis=-1) d = Document(content=x_color) if with_groundtruth: gt = gts[target['query-labels']['data'][idx][0]] yield d, gt else: yield d
[docs]def write_html(html_path): """ Method to present results in browser. :param html_path: path of the written html """ with open( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'demo.html') ) as fp, open(html_path, 'w') as fw: t = fp.read() t = t.replace('{% RESULT %}', '\n'.join(result_html)) t = t.replace( '{% PRECISION_EVALUATION %}', '{:.2f}%'.format(evaluation_value['Precision'] * 100.0), ) t = t.replace( '{% RECALL_EVALUATION %}', '{:.2f}%'.format(evaluation_value['Recall'] * 100.0), ) t = t.replace('{% TOP_K %}', str(top_k)) fw.write(t) url_html_path = 'file://' + os.path.abspath(html_path) try: webbrowser.open(url_html_path, new=2) except: pass # intentional pass, browser support isn't cross-platform finally: default_logger.info( f'You should see a "hello-world.html" opened in your browser, ' f'if not you may open {url_html_path} manually' ) colored_url = colored('https://opensource.jina.ai', color='cyan', attrs='underline') default_logger.info( f'🤩 Intrigued? Play with "jina hello fashion --help" and learn more about Jina at {colored_url}' )
[docs]def download_data(targets, download_proxy=None, task_name='download fashion-mnist'): """ Download data. :param targets: target path for data. :param download_proxy: download proxy (e.g. 'http', 'https') :param task_name: name of the task """ opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] if download_proxy: proxy = urllib.request.ProxyHandler( {'http': download_proxy, 'https': download_proxy} ) opener.add_handler(proxy) urllib.request.install_opener(opener) with ProgressBar(task_name=task_name) as t: for k, v in targets.items(): if not os.path.exists(v['filename']): urllib.request.urlretrieve( v['url'], v['filename'], reporthook=lambda *x: t.update_tick(0.01) ) if k == 'index-labels' or k == 'query-labels': v['data'] = load_labels(v['filename']) if k == 'index' or k == 'query': v['data'] = load_mnist(v['filename'])
[docs]def load_mnist(path): """ Load MNIST data :param path: path of data :return: MNIST data in np.array """ with gzip.open(path, 'rb') as fp: return np.frombuffer(fp.read(), dtype=np.uint8, offset=16).reshape([-1, 28, 28])
[docs]def load_labels(path: str): """ Load labels from path :param path: path of labels :return: labels in np.array """ with gzip.open(path, 'rb') as fp: return np.frombuffer(fp.read(), dtype=np.uint8, offset=8).reshape([-1, 1])